STUDII PRIVIND INFLUENȚA ATMOSFEREI MODIFICATE ÎN DIOXID DE CARBON ASUPRA PĂSTRĂRII DE SCURTĂ DURATĂ A FRUCTELOR DE ZMEUR

STUDIES ON THE INFLUENCE OF CARBON DIOXIDE MODIFIED ATMOSPHERE ON SHORT TERM STORAGE IN RASPBERRY FRUIT

Veringă Daniela, Vintilă Marian Institute of Research Development and Marketing of Horticultural – HORTING Bucharest, Romania

Abstarct

The storage of fruits in modified atmosphere rich in carbon dioxide slows down the aging and the action of pathogens. Research has shown that loss decreases with increasing carbon dioxide concentration and duration of treatment. The percentage of fruit affected by pathogens is very small, the best option is 20% CO₂ atmosphere maintained for two days at a temperature of 2° C. Weight loss had the lowest values at increased CO₂ concentration and conservation time. The appearance of the fruits varied very little, and the taste varied between parameters: very good and acceptable.

Cuvinte cheie : fructe de zmeur, dioxid de carbon,păstrare

Keywords: raspberry fruit, carbon dioxide, storage

1. Introduction

Using gas inhibitory effect on the metabolic activity of the product and the pathogens during transport has been studied by many researchers. Following experiments they showed that both the low level of O_2 and the high concentration of CO_2 reduced respiration rate (Beaudry, 1999; Cameron, 1989; Joles, Cameron, Shirazi, 1994).

Earlier results also indicated that transportation of strawberries, raspberries and cherries, in modified atmospheres using carbon dioxide concentrations of 20-25% had relevance to transport over long distances. (Marcellin, 1974).

All models used in the experiments requires knowledge of the rate of O_2 consumption and CO_2 evolution on the rate of respiration which are based on the composition of O_2 and CO_2 in the environment (Beaudry, Cameron, Shirazi and Dostal-Lange, 1992).

There have been numerous efforts to create the necessary gas mixture around the fruits and to establish the mathematical equations for calculating the concentration of O_2 and CO_2 from the microatmosphere in a polymeric film for packaging (Jurin and Karel, 1963). It was used computerized methods to solve the mathematical equations for calculating the gas concentration in the packaging system for transportation (Henig and Gilbert, 1975).

All the above mentioned models require the knowledge of the O₂ consumption rate and CO₂ evolution concerning the respiration rate, which are based on O₂ and CO₂ composition from medium.

Laboratory tests with fruit raspberry were made to create the possibility of substantiating their behavior in different modified atmospheres, rich in carbon dioxide (10% CO₂, 20% CO₂ and 30% CO₂) and determining whether these atmospheres can be used to transport these fruits.

The purpose of these measurements was to determine the usefulness and optimal percentage of carbon dioxide of modified atmospheres, to transport in fresh and short storage of the fruit, possibility in which the attack of pathogens to be the lowest, and the fruit to retain the original properties.

2. Material and methods

as:

Researches have been conducted on raspberry fruits (mixture of species), using equipment such

- hermetically sealed container for maintaining the tested carbon dioxide concentration;
- climate chamber TBV 2000; INFRALIT fan gas analyzer (CO₂ measurement range 0-50%);
- Ryan recording thermometer;
- Solomos maintained thermohygrographic probe and display;
- weighing with 0,001 kg accuracy.

The research method consisted of analytical and comparative analysis on the behavior of raspberry fruit in normal atmosphere and modified atmosphere with carbon dioxide at cold (in climate chamber at a temperature of approx. 2°C) and hot (in laboratory at a temperature of approx. 25°C).

We achieved the following treatments:

- V₀₂ Control normal atmosphere in exsicator, period of maintenance 6 days
- V₇ Modified atmosphere CO₂ concentration of 10% for 1 day and 6 days period maintenance
- V₈ Modified atmosphere CO₂ concentration of 20% for 1 day and 6 days period maintenance
- V₉ -Modified atmosphere CO₂ concentration of 30% for 1 day and 6 days period maintenance
- V₁₀-Modified atmosphere CO₂ concentration of 10% for 2 days and 6 days period maintenance
- V₁₁ -Modified atmosphere CO₂ concentration of 20% for 2 days and 6 days period maintenance
- V_{12} -Modified atmosphere CO_2 concentration of 30% for 2 days and 6 days period maintenance There have been observations and determinations in dynamics with respect to:
- the appearance of the fruit;
- firmness;
- organoleptic analyses;
- weight loss;
- the phytosanitary state of the fruit.

Raspberry (different varieties) was harvested directly into casseroles.

For each variant were introduced in the climate chamber three repetitions at a temperature of 2⁰ C. There were followed the experiences with a maintenance period of six days because this is the length of an average transport in Europe. During experience within a day or 2 days, was removed the carbon dioxide through the vent with a compressor. After the containers and the fruit exsicators were removed, the organoleptic analysis was done, which has been repeated after 2 days. Also during the inspection it was determined the evolution of weight loss.

3. Results and discussions

The value of losses in Raspberry is presented in the table 1. It may be noted that weight loss decreases with increasing carbon dioxide concentration and with increasing duration of treatment. In the 10% CO $_2$ treatment appeared an infection with botrytis cinerea. After removing samples from the climate chamber the first test of organoleptic quality controls was performed. After two days a new test was carried out. Assessment of organoleptic qualities (appearance, firmness and taste) is shown in tables 2 and 3.

As can be seen from tables 2 and 3 the variant that has the highest score is V_{11} (20% CO_2 and 2 days treatment) followed by V_8 and V_7 . The appearance varies slightly, and only between Nice and very nice. Firmness has values between good and very good, with two exceptions: V_{02} and V_{12} . The taste has the highest value to the Control, close to very good; variants, V_7 , V_8 , V_{10} , V_{11} have values between good and very good; V_9 and V_{12} variants approaching acceptable rating.

Raspberry fruits raised no issues of phytosanitary nature. After keeping the 5 days at a temperature of 20° C and high relative humidity (approx. 90%) a grey and white mycelium of Botrytis cinerea grew only to Control variants with 10% carbon dioxide (table 4).

4. Conclusions

In experiments with raspberries, the conclusions drawn are:

- weight loss decreases with increasing CO₂ concentration and maintenance period of treatment;
- weight loss are lower by 60% in variants with modified atmospheres compared to the Control variants;
- organoleptic qualities of fruits raspberries are appreciated with the highest scores at variant with 20% CO₂ and 2 days treatment;
- the percentage of fruit affected by pathogens is very small and only appeared in Control and variants with 10% CO₂:

For raspberries, optimal treatment option for transport is considered to be 20% CO₂ atmosphere maintained for 2 days and a temperature of 2° C.

References

1. Beaudry, R. M., 1999. Effect of O₂ and CO₂ partial pressure on selected phenomena affecting fruit and vegetable quality, Postharvest Biol. Technol., Vol 14, pp. 293-303.

- 2. Beaudry, R. M., Cameron, A. C., Shirazi, A, & Dostal-Lange, D. L., 1992. Modified atmosphere packaging of blueberry fruit: Effect of temperature on package O₂ and CO₂, Amer. Soc. Hort. Vol. 117, pp. 436-441.
- 3. Cameron, A.C., 1989. Modified atmosphere packaging a novel approach for optimizing package oxygen and carbon dioxide, Proceedings of the 5 t6h International Controlled Atmosphere Research Conference (Wenatchee, Washington), pp.197-207.
- 4. Henig, Y. S., Gilbert, S. G.,1975. Computer analysis of the variables affecting respiration and quality of produce packaged in polymeric films. Journal of Food Science, 40, 1033–1035.
- 5. Joles, D., Cameron, A., Shirazi, A., Petracek, P., Beaudry, R., 1994. Modified-atmosphere Packaging of 'Heritage' Red Raspberry Fruit: Respiratory Response to Reduced Oxygen, Enhanced Carbon Dioxide, and Temperature, J. AMER. SOC. HORT. SCI. 119(3): pp. 540–545.
- 6. Jurin, V., Karel, M., 1963. Studies on control of respiration of McIntosh apples by packaging methods, Food Technology, 17(6), pp.104-108.
- 7. Marcellin, P., 1974. Conservation des fruits et legumes en atmosphere controlee a l'aide de membranes de polymers, Revue Generale du Froid, 3, pp.217-236.

Tables and figures

Table 1. Losses occurred in experiments on raspberry fruit behavior after a treatment with CO₂ for 6 days maintenance period

Variant	Symbol	Total losses		Of which					
				Weig	ht loss	Losses devaluations by soaking		Losses (depreciations) by Mildewed	
		1 day	2 days	1	2 days	1	2 days	1 day	2 days
				day		day			
Control	V ₀₂	-	24.92	-	3.5	-	20.2	-	1.22
Modified atmosphere	V ₇	10.95	-	1.6		9.35	-	-	-
with CO2 at a concentration of 10%	V ₁₀	-	9.67	-	1.4	-	8.25	-	0.22
Modified atmosphere	V ₈	9.96	-	1.20		8.7	-	-	-
with CO2 at a concentration of 20%	V ₁₁	-	9.0	-	1.2	-	7.8	-	-
Modified atmosphere	V ₉	9.34	-	1.23	-	8.11	-	-	-
with CO2 at a concentration of 30%	V ₁₂	-	8.71	-	1.2	-	7.51	-	-

Table 2. The assessments of organoleptic qualities of raspberry fruit after 6 days storage in modified atmosphere

Organoleptic qualities / treatment	V_{02}	V ₇	V ₈	V ₉	V ₁₀	V ₁₁	V ₁₂
Appearance	11.2	11.2	13	12	13	14.4	11.2
Firmness	26.2	29.4	29.4	28	28	29.4	26.6
Taste	40.0	36.66	38	34.66	38.33	38	34.33
Total	77.4	77.26	80.4	74.66	79.33	81.8	72.13
Classification	4	5	2	6	3	1	7

Table 3. The assessments of organoleptic qualities of raspberry fruit after 6 days storage in modified atmosphere and two days in normal atmosphere

Organoleptic qualities / treatment	V ₀₂	V ₇	V ₈	V ₉	V ₁₀	V ₁₁	V ₁₂
Appearance	13.5	13	14.5	12	14	14.5	13.5
Firmness	28.66	30.66	32.33	32.66	31.5	35	32.33
Taste	46.0	44.66	46.33	35	42	42.66	29
Total	88.13	88.32	91.16	79.66	87.5	92.16	74.83
Classification	4	3	2	6	5	1	7

Table 4. Phytosanitary state of raspberry fruit maintained in modified atmosphere with carbon dioxide

INFECTED FRUIT	WITH PATHOGENS AN	AFTER FOLLOWING D 6 DAYS STORAGE		CO2 FOR ONE DAY
Initial	Control V ₀₂	V ₇	V ₈	V ₉
0	12.5	6.4	0	0
	Botrytis	Botrytis		
	Penicillium			
INFECTED FRUIT	PATHOGENS FOLLO	WING TREATMENT	WITH CO2 FOR TWO	DAY AND 6 DAYS
		STORAGE (%)		
Initial	Control V ₀₂	V ₁₀	V ₁₁	V ₁₂
	12.5	2.1	0	0
	Botrytis	Botrytis		
	Penicillium			